- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Copeland, Peter (1)
-
Fan, Suoya (1)
-
Hoxey, Andrew K. (1)
-
Murphy, Michael A. (1)
-
Saylor, Joel E. (1)
-
Stockli, Daniel F. (1)
-
Taylor, Michael H. (1)
-
Whipp, David M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Between 81°30ʹE and 83°E, the Himalayan range's “perfect” arcuate shape is interrupted by an embayment. We hypothesize that thrust geometry and duplexing along the megathrust at midlower‐crustal depths play a leading role in growth of the embayment as well the southern margin of the Tibetan plateau. To test this hypothesis, we conducted thermokinematic modeling of published thermochronologic data from the topographic and structural embayment in the western Nepal Himalaya to investigate the three‐dimensional geometry and kinematics of the megathrust at midlower‐crustal depths. Models that can best reproduce observed cooling ages suggest that the megathrust in the western Nepal Himalaya is best described as two ramps connected by a long flat that extends further north than in segments to the east and west. These models suggest that the high‐slope zone along the embayment lies above the foreland limb of an antiformal crustal accretion zone on the megathrust with lateral and oblique ramps at midlower‐crustal depths. The lateral and oblique ramps may have initiated by ca. 10 Ma. This process may have controlled along‐strike variation in Himalayan‐plateau growth and therefore development of the topographic embayment. Finally, we analyze geological and morphologic features and propose an evolution model in which landscape and drainage systems across the central‐western Himalaya evolve in response to crustal accretion at depth and the three‐dimensional geometry of the megathrust. Our work highlights the importance of crustal accretion at different depths in orogenic‐wedge growth and that the midlower crustal accretion determines the location of plateau edge.more » « less
An official website of the United States government
